top of page

Highlighted publications


Rasher, D.B., Steneck, R.S., Halfar, J., Kroeker, K.J., Ries, J.B., Tinker, M.T., Chan, P.T.W., Fietzke, J., Kamenos, N.A., Konar, B.H., Lefcheck, J.S., Norley, C.J.D., Weitzman, B.P., Westfield, I.T., and Estes, J.A. (2020). Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem. Science 369, 1351-1354. doi: 10.1126/science.aav7515

Kamenos Hennige Frontiers 2018.JPG
Frontiers in Mar Sci

Kamenos, N. A., Hennige, S.J. 2018. Reconstructing four centuries of temperature induced bleaching on the Great Barrier Reef. Frontiers in Marine Sciences. doi: 10.3389/fmars.2018.00283

Global Change Biology

Mao, J., Burdett, H.L., Mcgill, R.a.R., Newton, J., Gulliver, P., and Kamenos, N.A. (2020). Carbon burial over the last four millennia is regulated by both climatic and land use change. Global Change Biology. doi: 10.1111/gcb.15021

Journal of Phycology

McCoy, S. & Kamenos, N.A. 2015. Coralline algae in a changing world: Integrating ecological, physiological and geochemical responses to global change (review article). J. Phycol. 51:6-24 doi: 10.1111/jpy.12262

All publications

My group and I have published over 60 papers and book chapters on marine global change biology and biogeochemistry. See my Google Scholar profle for the most up to date list of publications and metrics

Book chapters:

1.          Kamenos, N.A., Burdett, H.L., & Darrenogue, N. Coralline algae as palaeoclimatic proxies. In Rhodolith/Maerl Beds: A Global Perspective (Eds: Riosmena-Rodríguez, R. Nelson, W. Aguire, J.). Elsevier. 2016 (ISBN: 3319293133)

2.          Roberts, J.M., Murray, F., Hennige, S., Fox, A., Henry, L-A., Kamenos, N.A., Gori, A., Anagnostou, E., Foster, G. Cold‐water corals in an era of rapid global change: are these the deep ocean’s most vulnerable ecosystems?. In: The cnidaria, past, present and future. (Eds; Goffredo, S and Dubinsky, Z). Elsevier. 2016 (in press).

3.          Foster, M.S, Filho, G.M.A., Kamenos, N.A., Riosmena-Rodríguez, R. & Steller, D.L. 2013. Rhodoliths and rhodolith beds. In: The revolution of science through SCUBA (Eds: Lang, M.A., Marinelli, R.L., Roberts, S.J. & Taylor, R.P.). Smithsonian Proceedings. 2013


Peer reviewed publications:​​

  1. Recknagel, H., Carruthers, M., Yurchenko, A., Nokhbatolfoghahai, M., Kamenos, N.A., Bain, M.M., Elmer, K.R. 2021. The functional genetic architecture of egg-laying and live-bearing reproduction. Nature Ecology and Evolution.

  2. Hennige, S.J., Larsson, A.I., Orejas, C., Gori, A., De Clippele, L.H., Lee, Y.C., Jimeno, G., Georgoulas, K., Kamenos, N.A. and Roberts, J. M. 2021. Using the Goldilocks Principle to model coral ecosystem engineering. Proceedings of the Royal Society B, 288(1956), 20211260. doi: 10.1098/rspb.2021.1260

  3. Recknagel, H., Kamenos. N.A., and Elmer K. 2021. Evolutionary origins of viviparity associated with palaeoclimate and lineage diversification Journal of Evolutionary Biology doi:

  4. Peña, V., Bélanger, D., Gagnon, P., Richards, J.L., Le Gall, L., Hughey, J.R., Saunders, G.W., Lindstrom, S.C., Rinde, E., Husa, V., Christie, H., Fredriksen, S., Hall-Spencer, J.M., Steneck, R.S., Gitmark, J., Grefsrud, E.S., Anglès d’Auriac, M.B., Legrand, E.,  Grall, J., Kamenos, N.A., & Gabrielson, P. 2021. Lithothamnion (Hapalidiales, Rhodophyta) in the changing Arctic and Subarctic: DNA sequencing of type and recent specimens provides a systematic foundation. European Journal of Phycology.

  5. Rasher, D.B., Steneck, R.S., Halfar, J., Kroeker, K.J., Ries, J.B., Tinker, M.T., Chan, P.T.W., Fietzke, J., Kamenos, N.A., Konar, B.H., Lefcheck, J.S., Norley, C.J.D., Weitzman, B.P., Westfield, I.T., and Estes, J.A. 2020. Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem. Science 369, 1351-1354. doi: 10.1126/science.aav7515

  6. Mao, J., Burdett, H. L., McGill, R. A. R., Newton, J., Gulliver, P., & Kamenos, N. A. 2020. Carbon burial over the last four millennia is regulated by both climatic and land use change. Global Change Biology 26, 2496-2504. doi:10.1111/gcb.15021

  7. Hennige, S., Wolfram, U., Wickes, L., Murray, F., Roberts, J.M., Kamenos, N.A, Schofield, S., Groetsch, A., Spiesz, E., and Aubin-Tam, M.-E. 2020. Crumbling reefs and cold-water coral habitat loss in a future ocean: evidence of ‘coralporosis’ as an indicator of habitat integrity. Frontiers in Marine Science 7, 668. doi: doi: 10.3389/fmars.2020.00668

  8. Schubert, N., Schoenrock, K. M., Aguirre, J., Kamenos, N. A., Silva, J., Horta, P. A., & Hofmann, L. C. 2020. Editorial: Coralline Algae: Globally Distributed Ecosystem Engineers. Frontiers in Marine Science, 7,352. doi:10.3389/fmars.2020.00352

  9. Porter, J., Austin, W., Burrows, M., Clarke, D., Davies, G., Kamenos, N.A., Riegel, S., Smeaton, C., Page, C., and Want, A. 2020. Blue carbon audit of Scottish waters. Scottish Marine and Freshwater Science 11, 0-96. doi: 10.7489/12262-1

  10. Schofield, J.E., Pearce, D.M., Mair, D.W.F., Rea, B.R., Lea, J.M., Kamenos, N.A., Schoenrock, K.M., Barr, I.D., and Edwards, K.J. 2019. Pushing the Limits: Palynological Investigations at the Margin of the Greenland Ice Sheet in the Norse Western Settlement. Environmental Archaeology, 1-15. doi: 10.1080/14614103.2019.1677075

  11. Schoenrock, K.M., Vad, J., Muth, A., Pearce, D.M., Rea, B.R., Schofield, J.E., and Kamenos, N.A. (2018). Biodiversity of kelp forests and coralline algae habitats in southwestern Greenland. Diversity 10, 117. doi: 10.3390/d10040117

  12. Schoenrock, K.M., Bacquet, M., Pearce, D., Rea, B.R., Schofield, J.E., Lea, J., Mair, D., and Kamenos, N.A. 2018. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). Journal of Phycology 54, 690-702. doi: 10.1111/jpy.12774

  13. Küpper, F.C., and Kamenos, N.A. 2018. The future of marine biodiversity and marine ecosystem functioning in UK coastal and territorial waters (including UK Overseas Territories)–with an emphasis on marine macrophyte communities. Botanica Marina 61, 521-535. doi: 10.1515/bot-2018-0076

  14. Kamenos, N.A., Hennige, S.J. 2018. Reconstructing four centuries of temperature-induced bleaching on the Great Barrier Reef. Frontiers in Marine Science

  15. McCoy S.J., Kamenos, N.A. 2018. Coralline algal skeletal mineralogy affects grazer impacts. Global Change Biology 24, 4775-4783 doi: 10.1111/gcb.14370

  16. McCoy S.J., Kamenos, N.A., Chung, P., Wooton, J.T., Pfister, C.A. 2018. A mineralogical record of ocean change: decadal and centennial patterns in the California mussel. Global Change Biology 24:2554-2562

  17. Burdett, H.L., Perna, G., McKay, L., Broomhead, G., Kamenos, N.A. 2018. Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment. Marine Ecology Progress Series. 587:73-80 doi:

  18. Pearce, D.M., Mair, D.W.F., Rea, B.R., Lea, J.M., Schofield, J.E., Kamenos, N.A. and Schoenrock, K. 2018. The glacial geomorphology of upper Godthåbsfjord (Nuup Kangerlua) in southwest Greenland. Journal of Maps 14:45-55 doi:10.1080/17445647.2017.1422447

  19. Recknagel, H., Kamenos, N.A., Elmer, K.R. 2018. Common lizards break Dollo’s law of irreversibility: genome-wide phylogenomics support a single origin of viviparity and re-evolution of oviparity. Molecular Phylogenetics and Evolution 2018. 127, 579-588. doi:

  20. Bach, L.L, Freer, J.J., Kamenos N.A. 2017. In situ response of tropical coralline algae to a novel thermal regime. Frontiers in Marine Science. doi: 10.3389/fmars.2017.00212

  21. Hennige, S.J., Burdett, H.L., Perna, G., Tudhope, A.W. and Kamenos, N.A. 2017 The potential for coral reef establishment through free-living stabilization. Nature Scientific Reports. 7, 13322. doi:10.1038/s41598-017-13668-7

  22. Kamenos N.A., Perna G, Gambi M.C., Micheli F, Kroeker K.J. 2016. Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size. Proceedings of the Royal Society: B. 283:20161159. doi: 10.1098/rspb.2016.1159

  23. Fitzer, S.C., Chung, P., Maccherozzi, F., Dhesi, S.S., Kamenos, N.A., Phoenix, V.R., Cusack, M. 2016 Biomineral shell formation under ocean acidification: a shift from order to chaos. Nature Scientific Reports. 6, 21076. doi: 10.1038/srep21076

  24. van der Heijden, L. H., & Kamenos, N. A. 2015. Calculating the global contribution of coralline algae to total carbon burial. Biogeosciences, 12:6429-6441. doi:10.5194/bg-12-6429-2015

  25. Burdett, H.L., Hatton, A.D., & Kamenos, N.A. Coralline algae are a globally significant pool of marine dimethylated sulphur. 2015. Global Biogeochemical Cycles. 29:1845-1853 doi: 10.1002/2015GB005274

  26. Fitzer, S.C., Vittert, L., Bowman, A., Kamenos, N.A., Phoenix, V. R. & Cusack, M. 2015. Ocean acidification and temperature increase impacts mussel shell shape and thickness: problematic for protection? Ecology & Evolution. doi: 10.1002/ece3.1756

  27. Hennige, S.J., Wicks, L.C., Kamenos, N.A., Perna, G. Findlay, H.S. & Roberts, J.M. 2015. Hidden impacts of ocean acidification of live and dead coral framework. Proceedings of the Royal Society: B. 282:20150990  doi: 10.1098/rspb.2015.0990

  28. Attard, K., Stahl, H., Kamenos, N.A., Turner, G., Burdett, H.L., Glud, N.R. 2015. Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: an eddy covariance study. Marine Ecology Progress Series. 535: 99-115 doi: 10.3354/meps11413

  29. Burdett, H.L., Hatton, A.D. & Kamenos, N.A. 2015. Effects of reduced salinity on the photosynthetic characteristics and intracellular DMSP concentrations of the red coralline alga, Lithothamnion glaciale. Marine Biology. 162:1077-1085  Doi:10.1007/s00227-015-2650-8

  30. Pauly, M., Kamenos, N.A., Donohue, P. & LeDrew, E. 2015 Coralline algal Mg-O bond strength as a marine pCO2 proxy. Geology. 43:267-270 doi:10.1130/G36386.1

  31. Fitzer, S.C., Zhu, W., Tanner, K.E., Phoenix, V.R., Kamenos, N.A. & Cusack, M. 2015 Ocean acidification alters the material properties of Mytilus edulis shells. Journal of the Royal Society: Interface 20141227 doi:10.1098/rsif.2014.1227

  32. McCoy, S. & Kamenos, N.A. 2015. Coralline algae in a changing world: Integrating ecological, physiological and geochemical responses to global change (review article). Journal of Phycology. 51:6-24 doi: 10.1111/jpy.12262

  33. Cusack, M, Kamenos, N.A., Rollion-Bard, C. & Tricot, G. Red coralline algae assessed as marine pH proxies using 11B MAS NMR. Scientific Reports. 5:8175 doi: 10.1038/srep08175

  34. Hennige, S.J., Morrison, C.L., Form, A.U., Büscher, J., Kamenos, N.A. & Roberts, J.M. 2014. Self-recognition in corals facilitates deep-sea habitat engineering. Scientific Reports. 4:6782 doi: 10.1038/srep06782

  35. Fitzer, S., Phoenix, V., Cusack, M. & Kamenos, N.A. 2014. Ocean acidification changes mussel biomineralisation pathways. Scientific Reports. 4:6218 doi: 10.1038/srep06218

  36. Burdett, H.L., Keddie, V., MacArthur, N., McDowall, L., McLeicsh, J., Spielvogel, E. & Kamenos, N.A. 2014. Dynamic photoinhibiton exhibited by Red Sea coralline algae. BMC Plant Biology. 14:139 doi:10.1186/1471-2229-14-139

  37. Fitzer, S., Phoenix, V., Cusack, M. & Kamenos, N.A. 2014. Ocean acidification reduces crystallographic control in juvenile mussel shells. Journal of Structural Biology. 188: 39-45

  38. Burdett, H.L., Carruthers, M., Donohue, P.J.C., Wicks, L., Hennige, S.J., Roberts, J.M. & Kamenos, N.A. 2014. Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral, Lophelia pertusa. Marine Biology. DOI 10.1007/s00227-014-2435-5

  39. Hennige S.J., Wicks L.C., Kamenos, N.A., Bakker D., Findlay H.S., Dumousseaud C. & Roberts J.M. 2014. Short – term metabolic and growth responses of the cold water coral Lophelia pertusa to predicted rises in atmospheric CO2. Deep Sea Research II. DOI:10.1016/j.dsr2.2013.07.005

  40. Brodie, J. et al. (including Kamenos, N.A.) 2014. The future of the NE Atlantic benthic flora in a high CO2 world. Ecology and Evolution. DOI:10.1002/ece3.1105

  41. Kamenos, N.A., Burdett, H.L., Aloisio, E., Findlay, H.F., Longbone, C., Dunn, J., Widdicombe, S. & Calosi, P. 2013. Coralline algae respond differently to rate and magnitude of ocean acidification. Global Change Biology. 19:3621–3628 doi:10.1111/gcb.12351

  42. Burdett, H.L., Donohue, P.J.C., Hatton. A.D., Alwany, M. & Kamenos, N.A. 2013. Spatiotemporal variability of dimethylsulphoniopropionate on a fringing coral reef: the role of reefal carbonate chemistry. PLoS One. 8: e64651. doi:10.1371/journal.pone.0064651

  43. Cusack, M., Guo, D., Chung, P. & Kamenos, N.A. 2013. Biomineral repair of Abalone shell apertures. Structural Biology. 183:165-171

  44. Wicks, L.C., Hennige, S.J., Kamenos, N.A., and Roberts, J.M., 2013, Carbon budget of the cold-water coral Lophelia pertusa. British Oceanographic Data Centre - Natural Environment Research Council. DOI:10.5285/e4887142-c2b6-2cde-e044-000b5de50f38

  45. Birchenough, S., Bremner, J, Henderson, P., Hinz, H., Jenkins, S., Mieszkowska, N., Roberts, J.M., Kamenos, N.A. & Plenty, S. 2013. Shallow and shelf subtidal habitats and ecology. DEFRA Marine Climate Change Impact Card.

  46. Birchenough, S., Bremner, J, Henderson, P., Hinz, H., Jenkins, S., Mieszkowska, N., Roberts, J.M., Kamenos, N.A. & Plenty, S. 2013. Impacts of climate change on shallow and shelf subtidal habitats. MCCIP Science Review 2013: 193-203. DOI:10.14465/2013.arc20.193-203.

  47. Kamenos, N.A., Hoey, T., Nienow, P., Fallick, A.E. & Claverie, T. 2012. Reconstructing Greenland Ice Sheet runoff using red coralline algae. Geology. 40:1095-1098 doi:10.1130/G33405.1

  48. Burdett H.L., Aloisio E., Calosi P., Findlay H.S., Widdicombe S., Hatton A.D. & Kamenos, N.A. 2012. The effect of chronic and acute low pH on the intracellular DMSP production and epithelial cell morphology of red coralline algae. Marine Biology Research 8:756-763

  49. Rix, L.N., Burdett, H.L. & Kamenos N.A. 2012. Irradiance-mediated dimethylsulphoniopropionate (DMSP) responses of red coralline algae. Estuarine, Coastal and Shelf Science. 96:268-272

  50. Burdett, H.L., Hennige, S.J., Francis, F.T.-Y., & Kamenos, N.A. 2012. Characterising the photokinetics of red coralline algae using pulse amplitude modulation (PAM) fluorometry. Botanica Marina. 55: 499-509. DOI: 10.1515/bot-2012-0135

  51. Burdett, H.L, Kamenos, N.A. & Law, A. 2011. Using coralline algae to understand historic marine cloud cover. Palaeoceanography, Palaeoclimatology & Palaeoecology. 302: 65-70

  52. Kamenos, N.A. 2010. North Atlantic summers have warmed more than winters since 1351 and the response of marine zooplankton. PNAS. 107, 22442-22447

  53. Kamenos, N.A. & Law, A. 2010. Temperature controls on coralline algal growth. Journal of Phycology. 46: 331-335

  54. Kamenos, N.A., Cusack, M., Huthwelker, T., Lagarde, P. & Scheibling, R.E. 2009. Mg-lattice associations in red coralline algae. Geochimica Cosmochimica Acta .73: 1901-1907

  55. Kamenos, N.A., Strong, S.C., Shenoy, D., Wilson, S.T., Hatton, A.D. & Moore, P.G. 2008. Red coralline algae as a source of the climate gas dimethylsulphoniopropionate. Marine Ecology Progress Series. 372: 61-66

  56. Kamenos, N.A., Cusack, M. & Moore, P.G. 2008. Red coralline algae are global palaeothermometers with bi-weekly resolution. Geochimica Cosmochimica Acta. 72: 771-779

  57. Linge,H., Lauritzen, S.E., Mangerud, J, Kamenos, N.A. & Ghererdi, J.-M. 2008. Assessing the use of U-Th dating for cold-water calcareous algae. Quaternary Geochronology 3: 76-88

  58. Claveire, T & Kamenos, N.A. 2008. Spawning aggregations and mass movements in subtidal Onchidoris bilamellata (Mollusca; Opisthobranchia). Journal of the Marine Biological Association U.K. 88: 157-159

  59. Kamenos, N.A., Calosi, P. & Moore, P.G. 2006. Substratum-mediated heart rate responses of an invertebrate to predation threat. Animal Behaviour. 71: 809-813

  60. Downie, J.R., Robinson, E., Linklater-McLennan, R.J. & Kamenos, N.A. 2005. The costs of extended larval transport in the Trinidadian stream frog, Mannophryne trinitatis (Dendrobatodae). J. Natural History 39: 2023-2034

  61. Kamenos, N.A., Moore, P.G. & Hall-Spencer, J.M. 2004. Nursery-area function of maerl (subtidal red coralline algae) grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Marine Ecology Progress Series 274: 183-189

  62. Kamenos, N.A., Moore, P.G. & Hall-Spencer, J.M. 2004. The small-scale distribution of gadoids in shallow inshore waters; what role does maerl play? ICES Journal of Marine Science 61: 422-429

  63. Kamenos, N.A., Moore, P.G. & Hall-Spencer, J.M. 2004. Maerl grounds provide both refuge and high growth potential for juvenile queen scallops (Aequipecten opercularis). J. Experimental Marine Biology & Ecology  313: 241-254

  64. Kamenos, N.A., Moore, P.G. & Hall-Spencer, J.M. 2004. The attachment of the juvenile queen scallop (Aequipecten opercularis) to maerl in mesocosm conditions: juvenile habitat selection. J. Experimental Marine Biology & Ecology 306: 139-155

  65. Jackson, C.M., Kamenos N.A., Moore, P.G. & Young, M. 2004. Meiofaunal bivalves in maerl, and other substrata; their diversity and community structure. Ophelia 58: 49-60

  66. Kamenos, N.A., Moore, P.G. & Hall-Spencer, J.M. 2003. The heterogeneity of dredged versus un-dredged maerl grounds. Journal of the Marine Biological Association U.K. 83: 411-413

bottom of page